Escaping Local Optima in Multi-Agent Oriented Constraint Satisfaction
نویسندگان
چکیده
We present a multi-agent approach to constraint satisfaction where feedback and reinforcement are used in order to avoid local optima and, consequently, to improve the overall solution. Our approach, FeReRA, is based on the fact that an agent’s local best performance does not necessarily contribute to the system’s best performance. Thus, agents may be rewarded for improving the system’s performance and penalised for not contributing towards a better solution. Hence, agents may be forced to choose sub-optimal moves when they reach a specified penalty threshold as a consequence of their lack of contribution towards a better overall solution. This may allow other agents to choose better moves and, therefore, to improve the overall performance of the system. FeReRA is tested against its predecessor, ERA, and a comparative evaluation of both approaches is presented.
منابع مشابه
Escaping Local Optima: Constraint Weights vs. Value Penalties
Constraint Satisfaction Problems can be solved using either iterative improvement or constructive search approaches. Iterative improvement techniques converge quicker than the constructive search techniques on large problems, but they have a propensity to converge to local optima. Therefore, a key research topic on iterative improvement search is the development of effective techniques for esca...
متن کاملMinutes from “Multi-agent Oriented Constraint Satisfaction”
The paper begins with a definition of a constraint satisfaction problem. Lin noted that we were all quite familiar with this definition, but discussing it helped to use up time in his presentation. The paper describes two general methods for solving a CSP: generate and test (GT), and backtracking search (BT). GT generates possible combinations of variables and checks whether it has found a solu...
متن کاملWinner Determination in Combinatorial Auctions using Hybrid Ant Colony Optimization and Multi-Neighborhood Local Search
A combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The WDP in combinatorial auctions is the problem of finding winning bids that maximize the auctioneer’s revenue under the constraint that each item can be allocated to at most one bidder. The WDP is known as an NP-hard problem with practical applications like electronic commerce, production manag...
متن کاملAgent Compromises in Distributed Problem Solving
ERA is a multi-agent oriented method for solving constraint satisfaction problems [5]. In this method, agents make decisions based on the information obtained from their environments in the process of solving a problem. Each agent has three basic behaviors: least-move, better-move, and random-move. The random-move is the unique behavior that may help the multi-agent system escape from a local m...
متن کاملAnalyzing and Escaping Local Optima in Planning as Inference for Partially Observable Domains
Planning as inference recently emerged as a versatile approach to decision-theoretic planning and reinforcement learning for single and multi-agent systems in fully and partially observable domains with discrete and continuous variables. Since planning as inference essentially tackles a non-convex optimization problem when the states are partially observable, there is a need to develop techniqu...
متن کامل